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A sufficient condition for wave collapse in the nonlinear Schrodinger
equation is derived on the basis of an estimate of the kinetic energy.
The collapse criterion can therefore be called dynamic. It is shown that
the dynamic criterion is related to the strong collapse regime of the
nonlinear Schrodinger equation. The analogy of the motion of a New-
tonian particle in a potential, which is used in the derivation of the
collapse criterion, makes it possible to extend the sufficient conditions
for collapse to a number of other nonlinear partial differential equa-
tions. © 1995 American Institute of Physics.

In many physical models of the interaction of nonlinear waves the collapses of
waves or the formation of singularities in the solutions of nonlinear partial differential
equations over a finite time play an important role as effective mechanisms of energy
concentration. One of the most versatile models of this type is the nonlinear Schrodinger
equation (NLE)

i+ Ay+|927Y=0, >0, (1)

which describes the self-action of wave packets in media with a nonlinearity of degree
20+ 1. In the most common case o= | the NSE serves as a model of the propagation of
a powerful laser pulse in a medium with a symmetry center,' the evolution of Langmuir
waves in a plasma.2 and so on. The NSE can be written in the Hamiltonian form

oH 1 i

where the Hamiltonian H and the number of particles N= [| Y|*dPr are integrals of the
motion, and D is the dimension of the space.

In quantum mechanics Eq. (1) is the Schrodinger equation for the wave function of
a condensate of a weakly nonideal Bose gas with an attractive potential® U= —|4{?. On
this basis, we shall consider for the NSE the kinetic energy K= X/N and the potential
energy U=—- (c+1)Y/N, where

1
— 2 D _ 20+2 4D
X J’|Vz/1|dr, Y 0+1j|:/1| dbr.
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The existence of collapse in the NSE can be proved by analyzing the temporal
evolution of the quantity A= [r*|# |*d®r. which can be interpreted as the average width
of the initial distribution | |. Using Eq. (1), we obtain the following expression for the
first time derivative

= J s i *‘
A=12i xa(—a;:lp”md/

dPr, (3)

where summation over repeated indices is implied. Repeated differentiation of the quan-
tity A, with respect to the time and integration by parts yield the following relation —
often called the virial theorem:

A,,=8J |Vy |2d°r - ZiDlj ly |2”+2dDr=40DH—4(o'D—2)J |V [2dPr.
(4)
In the case D=2 it follows from the last relation that
A,<4DH, (5)

and for H<O0 the positive-definite quantity A becomes negative over a finite time by
virtue of Eq. (1). This means that a singularity appears in the solution of the given
NSE.2* In addition, the decrease in A near the collapse point indicates that the initial
wave beam is self-focused (compressed). In the case H >0, oD=2 both collapse and
spreading of the initial disturbance are possible. Although the NSE is no longer appli-
cable near the formation point of a singularity and dissipative or some other limiting
mechanisms come into play, the strong compression of the wave packet can be described
on the basis of the NSE. Collapse is thus an effective mechanism of energy dissipation.
In this connection, it is very important to be able to predict the presence or absence of
collapse for different classes of initial conditions. Collapse is impossible for oD <2 (Ref.
5). The value oD =2 is critical and the function A(r) is determined completely by the
virial theorem (4). In what follows we shall study everywhere supercritical NSE with
D=3, o=1, which is most important for applications. All results, however, can be
trivially extended to any supercritical (oD >2) NSE. In the case at hand the sufficient
condition for collapse H<0 was clarified considerably in Ref. 5. It was found that for
X> Xy the inequality

A,<12(H-Hy) (6)

follows from (4). Here Xy and H y are the values of X and H on the main soliton solution
of Eq. (1)

¥ o=AR(AX)e™M, —NZR+AR+R’=0. 7

Here \?= NYN, No=18.94, Hy= Ng/N, and Xy= 3N2/N. At the same time it was
shown that for H<Hy and X <Xy defocusing (i.e., spreading of the initial wave packet)
occurs. The numerical calculations show that for H>Hy both collapse and defocusing
are possible. According to the condition (5), collapse will obviously occur if the follow-
ing condition is satisfied:’
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A,l,=0$‘—4\/HA|,=O‘ H>0. (8)

In this study we found a sufficient condition for collapse. The condition is based on the
estimate of the kinetic energy in the NSE. With some degree of arbitrariness, the criterion
for collapse which we found can thus be called a “‘dynamic” criterion, in contrast to the
“static” criterion in Ref. 5, where the potential energy was estimated. The dynamic
collapse criterion supplements in a natural manner the results of Ref. 5. Specifically, we
will show on the basis of an investigation of the Gaussian initial conditions that for
H>H this criterion can also predict collapse when the inequality (8) does not hold. In
addition, we will derive a relation between the dynamic criterion for collapse and the
regime of the so-called strong collapse of the NSE.®

Setting ¢ =Re'® (R=|y¢ |) and using the Cauchy—Bunyakovskil inequality, we
obtain the following expression from the virial theorem (3):

<4 \/Tr2l¢lzd°r\/T(V¢)2R2dDr. 9)

At the same time, we can rewrite X as follows:

ad
f xa-g;—deDr

|A =4

x=f |Vy lder=f (VR)der+j (V)*R%dPr, (10)
and the number of particles N can be related to A as

2 2
N=j l(//lZdDr=-Ej (x,VR)Rs-D—\/j rzlwlzdor\/T(VR)der. (11)

Using Eqs. (9)—(11) and recalling that we have set D=3 and o= 1, we obtain from Eq.
(4) the main differential inequality

N2 A2
- _ 203, < — —
A,=12H 4J'|V¢l|dr 12H=9—~ = (12)

The substitution A=B*’ gives the inequality

2
B slSHB”S--AiLv;-g (13)
u 4 B’

which has a simple mechanical analogy. To understand it, we write this inequality in the
form

2
B =15HB“5—iz N 2(1) (14)
I 4 E}'/'S g ’

where g2(1) is an unknown nonnegative function of time. Then B is the coordinate of a
“particle” whose motion is attributable to two forces: a conservative force
F,=— 0U/éB with the potential

U(B)=—3$HBY + N?B™ (15)
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and an additional force f,=—g*(¢) which pulls the particle toward the origin B=0.
Because of the influence of this force, the energy of the “particle” is time-dependent:
E(t)=(B,2/2)+U(B). Collapse occurs when to the “particle” reaches the origin in a
finite period of time. If the *particle” reaches zero without the force —gz(l), then sooner
or later it will reach zero if this additional negative force is taken into account. For H<0
the particle will always fall into the origin. In what follows we shall study everywhere the
case H>0. The potential energy U(B) will then contain a barrier with a maximum at the
point B=B,,, where B, =(} NY/H)¥* The energy E,, =U(B,,) is critical, since the
particle can overcome the barrier only if E(0)>E,, . This gives the sufficient conditions
for collapse:

a) for B(t=0)<B,, E(0)<E, the “particle” cannot overcome the barrier on the
right side, and it therefore always falls to zero over a finite period of time;

b) for E(0)>E,,, B,(t=0)<0 the “particle” is guaranteed to overcome the barrier
from right to left in the case B(t=0)>B,; correspondingly, it will fall into zero over a
finite time, and especially in the case B(t=0)<B,,.

We now consider the behavior of the solution of Eg. (14) in the limit B—0,
B,<0, corresponding to a collapsing solution. In this case the quantities B%S and B?° are
vanishingly small. Ignoring these quantities, we obtain the following expression after
integrating this equation twice:

B(t)=— jr \/2E(to)— J[”gz(t')B,:dt'dt"S— V2E(te)(t—to),
o ]

where B(t,)=0, t<t,. Considering the variable A again, we find

A=BY¥<(2E(15))¥3(te— Y. (16)

We note that, in contrast to the previously employed collapse criteria, > where the *“par-
ticle” fell into zero with a finite rate A,, here A, goes to — at the point r=1,. Thus,
according to Eq. (6), as A—0, A,<0 we have

A(D)<12(H—Hy)to(1—1p). (17

For this reason, the criterion (12) also gives a higher rate of fall of the “particle” into the
origin of the coordinates than does (6). However, the time of falling into the origin and
not the rate of fall itself is of greatest interest: A(to)=0. This time is generally different
for Egs. (17) and (16). We designate this time as to, and tg, for Egs. (16) and (17),
respectively, and designate by A®) and A® the corresponding solutions of Egs. (6) and
(12), where the inequality signs are replaced by equal signs. Let the initial conditions at
t=1, be the same for both solutions:

A1) =a®(r), AP()=AP(1;)<0. (18)

Here A‘@-?)(1;) are assumed to be small enough so that for t=<t, the dependences (17) and
(16) are valid. Substituting them into expressions (18), we obtain to,<to, . For the same
initial conditions the zero point is therefore reached more rapidly with the criterion (12)
than with the criterion (6). We underscore the fact that this result was obtained only for
the asymptotic region A(t)—0. : :
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The regime (16) of the vanishing of A corresponds to the so-called strong collapse
of Eq. (1) — quasiclassical compression of the wave packet.6 In the strong-collapse
regime a finite energy is trapped at the singularity, in contrast with weak collapse,6 for
which, formally speaking, no energy is trapped at the singular point. This stems from the
fact that weak collapse is described by the self-similar solution

1 r
Y = . ¢ ,_), a=0.545..., (19)
(rg=0) 771 \(1o=0)7
which is valid only in a bounded neighborhood of the singularity, and therefore a finite
amount of energy, which is determined by the characteristic values of |¢ | for which Eq.
(1) is inapplicable, is trapped in the collapse.

The numerieal and analytic studies showed that, in practice, weak collapse occurs
and strong collapse is unstable.®” However, the collapse criterion (12) obtained above
“knows nothing” about the stability or instability of specific solutions of the NSE and
indicates the existence of solutions that vanish more rapidly than does solution (19).
Despite the fact that this criterion is sufficient but not necessary, it gives a lower estimate
of the function A(r) that is identical to the answer corresponding to the strong-collapse
regime. In the special case of quasiclassical initial conditions strong collapse can be
observed in a numerical calculation, where there is not enough time for the instability to
destroy the time dependence® 4~ (o~ ns. ’

In Ref. 5 it was shown that the main soliton solution (7) plays a special role. For this
solution inequality (6) becomes an exact equality and the small variations of (7) can lead
to both quasicollapsing and defocusing (spreading) solutions. We now find the initial
conditions for which the differential inequality (12) becomes an exact equality. It is thus
sufficient to note that from the quantum-mechanical viewpoint inequalities (9)—(11) are
Heisenberg uncertainty relations. These inequalities become exact for the class of func-
tions

b g=pe™ T, | (20)

where p and « are arbitrary numbers, and a>0. For the initial conditions (20) the
quantities A|,—¢, A,|,=0, H, and N can be calculated explicitly. As an example, for k =0
and p%/a=2%% we obtain H/Hy= 16m/N3=1.38..., Bl;=0=Bn, B/i=0=0, ie., the
“particle” is located at the top of the barrier and has zero initial velocity. Holding the
ratio p%/ @ constant and setting k=& 2 where & ? is an arbitrarily small positive number,
we find that the initial velocity is B,|,~=o<O0 and that the criterion (12) guarantees the
existence of collapse. Here the inequality (8) does not hold for the indicated values of the
parameters p,x, and a, since the initial “velocity” B,|;=o can be assumed to be arbi-
trarily close to zero. For this reason, the criterion of Ref. 5 does not predict collapse in
this case and this special form of the initial conditions shows the nontrivial nature of the
dynamical criterion for collapse. At the same time, for the functions (20) there exists a
region of parameters where H/Hy > 1, x>0, and both the criterion (12) and the criterion
of Ref. 5 predict collagse. Similar results can also be obtained for hyper-Gaussian initial
conditions = pexp(— ar"—ixr"), where n>1. Even in this case, however, the region of
values of the parameters p,«, and a, where only the dynamical criterion predicts col-
lapse, changes rapidly as n increases. This region therefore depends strongly on the initial
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conditions and, in contrast with the collapse criterion of Ref. 5, it apparently cannot
generally be determined in terms of the integrals of motion H and N. Therefore, for
H>H y a constructive method for determining the possibility of collapse is to determine
whether inequality (8) is satisfied and to analyze the dynamical criterion (12). An exhaus-
tive answer is given in Ref. 5 in the case H<Hy and the dynamical criterion is super-
fluous, although even in this region it can predict the existence of collapse.

Sufficient conditions for collapse have been obtained for other equations besides the
NSE: modifications of the Boussinesq equation,™'® the three-dimensional cubic
Kadomtsev—Petviashvilli equation,'' and the nonlinear Klein-Gordon equation.'? By
analogy with Eq. (12), all known majorizing differential inequalities employed in the
derivation of the sufficient conditions for collapse can be reduced to Newton’s equation
for the motion of a particle with the coordinate R under the action of a potential force and
an additional force ag(r)? with a constant sign, where R is a positive-definite quantity,
and a=const. Two situations are possible, depending on the sign of a:

i) a<0. If the positive-definite quantity R reaches zero over a finite time without the
force ag>(t), then the particle will certainly reach zero when this negative force is taken
into account. The collapse criteria for the NSE from Ref. 5 and Eq. (12) correspond to
this case.

ii) a>0. If the particle coordinate R becomes infinite over a finite time without the
positive force @g?(t), then it will certainly become infinite when this force .is added. The
collapse criteria for the Boussinesq equation and the nonlinear Klein—Gordon equation
correspond to this case.

We note that the conditions i) and ii) obtained above are more general than the
previously considered conditions in Ref. 5, since they do not impose any restrictions on
the sign of R,,=¢. As an example, this makes it possible to reject the condition
R,|,=0>0 in Ref. 13. The condition ii) also generalizes the result of Ref. 14, according to
which for a>0 a sufficient condition for collapse is that the potential force acting on a
particle must always be positive (of course, here it is assumed that the potential drops off
sufficiently rapidly so as to produce collapse).
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